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1. INTRODUCTION

Much of the current attention being given to optical computing1 - 4 stems

from its new found5 ability to perform digital operations and hence to achieve

high accuracy. In optics as in electronics, digital operations are slower and

clumsier than analog operations. On the other hand, digital operations are

more flexible and more accurate. These considerations lead us to consider

whether some sorts of hybrid optical-electronic, analog-digital systems might

be useful for some tasks. In this paper, we consider two closely-related

hybrids: analog optics with digital electronics and analog optics with hybrid

analog-digital electronics. Both systems will use analog optics for rapid and

moderately accurate solution of complex problems and use the electronics to

"bootstrap" the accuracy. That is each new optical computation should

increase the accuracy of the solution. We will call such a system a Bimodal

Optical Computer.

While many of these concepts appear to be new to optics, they are not new

to computing in general. We will attempt to document the most useful of the

prior publications, to make isomorphisms with other fields explicit, and to

label those contributions which appear to be new. With all of these caveats,

our primary purpose is to present a general approach for using optical

computers. We will illustrate that approach with one specific problem (linear

algebraic equations), but this should not obscure the generality of the

concept.
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2. THE GENERIC SYSTEM

The generic system is comprised of three properly-interacting subsystems:

an optical analog solver of the basic problem, a memory, and an accurate

(digital or hybrid) calculator of the solution accuracy. The basic cycle is:

o Calculate an approximate solution with the optical analog processor,

o Remember that solution to high accuracy,

o Calculate the solution accuracy with the accurate computer,

o Repose the problem as an error reduction problem,

o Solve with optical analog processor,

o Using the just-calculated improvement and the stored prior solution,
calculate and remember the improved solution with the accuracy
computer,

o Calculate the solution accuracy with the accurate solution,

o If the solution is accurate enough, stop.

o If not, recycle.

Clearly, the convergence condition is that the error be reduced in each

iteration. If this is the case, as we will show, the optical analog processor

no longer limits solution accuracy.

In a purely digital system, the primary consumer of space, weight, power,

time, and cost is the direct or iterative problem solver which would be

replaced by the relatively small, low weight, power conservative, fast, and

inexpensive optical analog processor. Thus there is the potential for

significant overall system improvement using this hybrid approach.
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There are two major forms the accurate processor can take. First, it can

be a special purpose, fast, inexpensive digital processor. For reasons which

will soon become evident, we call the hybrid system involving such a processor

a "mathematical problem solver." Second, the accurate processor could be a

physical system interacting with the world. The problem is then isomorphic

with the control theory. We call such a processor a "physical problem

solver." With a mild effort, the reader should become convinced that these

two problem solvers use the same mathematics. We turn now to the mathematics.

2-2
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3. ACCURACY ANALYSIS

We will examine the Bimodal Optical Computer (BOC) with specific emphasis

on linear algebra as might be used, for example, for numerical solution of

partial differential equations. The generic BOC method was originally

proposed by Thompson6 quite some time ago for iteratively improving the

precision of mechanical devices which were used for the simultaneous solution

of linear equations. This method appears to provide some considerable benefit

for situations where a low accuracy, but fast device is available for

providing approximate solutions to partial differential equations. This can

then be linked to a higher accuracy device which is particularly well suited

for forward substitution of the approximate solution into the original

equation. The BOC iterative scheme, besides having been proposed by Lord

Kelvin,6 is a standard numerical approach to the iterative solution of linear

systems and has been analyzed with respect to numerical round-off error by

Wilkinson 7 and Stewart,8 among others. A working model of this analog and

digital bimodal electrical computer has also been constructed by Karplus.1 0

This work reexplores and extends the prior work and incorporates modern linear

and nonlinear optical computer techniques.

We can summarize this idea in the following way. Suppose we want to

solve an n-dimensional linear system of equations.

Ax - b (1)

These problems are of great interest in their own right. In addition

such systems with high dimensions arise when linear partial differential

equations are solved by the finite difference method. Many other problems can

be recast in this form. Suppose further that we have built a discrete optical
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analog processor for this problem which gives an approximate solution that can

be summarized with the equation

Ax , b (2)

where A and b differ from A and b because of the limited accuracy of the

analog components. We now have an approximate solution to our problem, x,

which typically is accurate to a few percent. Next, we use a digital

electronic computer to form the residual

r M b - A x (3)

using the actual, high precision versions of A and b. Notice that this step

entails only substitution of the current solution, x, in the modal equations,

a relatively fast operation for even a modest digital computer. Subtracting

Eq. (3) from (1) with digital electronics, we can write

A(x - x) - r (4)

Call the current solution error

x - x M ax (5)

and write Eq. (4) as

A(Ax) = r (6)

We now have a problem of the same form as the original with A being the same

matrix, except with the inhomogeneity term b replaced by the residual

vector r.

3-2
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We now want to use the analog optical computer again, to estimate Ax and

refine the solution, x, but we first can scale the equations by an appropriate

large number, S, to bring the voltages and currents back to the levels in the

first solution. Thus, we solve

A = (S (7)

and then use the estimate

Ax= /S (8)

to refine the current solution to

x = x+ Ax (9)

This process can be iterated, and under favorable conditions will converge

quickly to solutions of accuracy only by the digital computer representation

of A, b and the digital computation of Eq. (3). The description above for

the iterative procedure was given in terms of a linear equation; however, this

concept may also be applied to nonlinear systems,and would take advantage of

the unique capacity of nonlinear analog circuits for the solution of the

nonlinear algebraic equations of the discretized system. An analysis similar

to the above treatment will again apply since the equations become quasi-

linear near the true solution.

We might call this a floating-point analog computation where the scaling

parameter, S, acts as a radix, varying from stage to stage with the size of

the residuals in the equations. We note that this technique is quite similar

to the very standard iterative numerical methods, such as Newton's method. In

addition, we see that this technique marries analog and digital computers in a

most congenial way - we take advantage of the speed and highly parallel

3-3
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nature of the analog system, as well as the memory and high precision of the

digital system in the external loop.

We have examined the stability and convergence properties of the

iteration process for this BOC. To first order we can model the error caused

by solving the system on an analog computer (Step 2) by [8, Corollary 3.7]:

(A + E)- (I + F)A-  (10)

where E is the error in the matrix due to the analog representation, the norm

of F is bounded by

k(A)

HFII < E (1)
1- k AA

~.is a matrix norm, and the condition number of A is defined by

k(A) IIAIHII (12)

Substituting this in Step 3 gives

x k+l xk + 6 k  (13)

k k
-- - xk + (I +F)A-l(b -Axk)

Letting x* A -ib be the exact solution, we can rearrange this to yield

SXk+l x* - F(sk x*) (14)
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and taking norms of both sides,

Hxk+l - x*H IIFILIlxk- x*II (15)

We thus have a sufficient condition for geometric convergence of the

process, namely JF1< 1, which is satisfied if

k(A) - 1/2 (16)

where k(A) is the condition number of A and flEJ is the error in the analog

representation of the true matrix A. Of course when convergence takes place,

the errors in the digital computation may ultimately overtake the effect of

the analog error that is modeled here, although the effects of analog noise

may prevent that kind of ultimate accuracy.

We have performed an eigenvalue analysis of the operation of this bimodal

machine for the solution of a one-dimensional partial differential equation

and have performed test numerical calculations to illustrate the properties of

this system. We have found that convergence depends sensitively on the

coefficients of differential equations as well as the boundary conditions.

The analysis which we have done so far corresponds to the case of a relaxation

parameter equal to one. The use of relaxation parameters less than one should

influence the range over which this convergence scheme will be stable.

The particular one-dimensional partial differential that was investigated

in detail (9] was

dz2  + k[y(z)] 0 
(17)
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y(a) -b

(17a)

y(a2) b2

Discretizing this equation leads to the linear system Ax = b, where

2 + 6 -1 0 • 0
-1 2 + 6 -1 • 0

A 0 -1 2 + 6 0 (18)

0 0 . 2+6

and

bi

0

b - 0 , and the parameter 6 -k(Az)2

b2

where Az is the grid size.

The iterative analog/digital scheme is governed by the recurrence

relation

x(i+1) = M.X(i) + A-1 . b (20)

where A is a version of A perturbed because of the limited accuracy of the

analog part of the system, and

M -A A (21)

3-6
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The stability of the method can be seen now to depend on the eigenvalues of

this matrix M.

It is clear from Eq. (21) that if A is ill-conditioned, the eigenvalues

of M can be unbounded. Therefore, we need to examine whether the matrix A is

ill-conditioned, that is whether the matrix A71 is unstable. One measure of

the stability of A71 is the sensitivity of det(A) to small changes in the

elements of A. Since 6 is a parameter, we first examine the dependence of

det(A) on 6. In Figure 1 we show this dependence for n - 30, although the

behavior is found to be the same for any value of n.

It was found that there are three distinct regions of behavior, depending

on O:

1. «(' << 1. Here there is, for a given accuracy of the analog part, a

definite limit to how large the number of grid points n can be

before the scheme becomes unstable. In particular, one may show

that this upper limit is "I/e, where e is the accuracy of the

analog part of the system.

2. 161 >> 1. The iteration was found to be stable in this region.

3. o [-4,0]. Here, the stability depends critically on the eigenvalues

of A, and the scheme is generally unreliable.

The analysis above, for a simple second-order linear differential

equation, shows that more work is needed to put the proposed hybrid method

into practice. Relaxation parameters, or more sophisticated iterative

approaches, such as conjugate-gradient techniques, might be required to ensure

stability for large, nonlinear systems of interest.
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4. NONLINEAR PROBLEMS

Perhaps the most important payoff with BOCs may be associated with the

solution of nonlinear problems. Many physical phenomena result in nonlinear

differential or ultimately algebraic equations for solution. Such problems

are notoriously difficult to treat by conventional numerical methods on

digital computers. This comment follows since the algorithms will involve

linearization or perhaps iteration with convergence being slow or perhaps

nonexistent in highly nonlinear problems. A more suitable approach would be

based on directly building the nonlinear behavior into the calculation

process. It appears possible to construct hybrid machines based on this logic

following lines parallel to that discussed in Section 3. The key to this

approach rests on the fact that nonlinear electronic or optical elements can

be readily made and integrated together into an overall nonlinear computer.

As a very simple example of a nonlinear problem we may consider the

search for roots of a polynomial p(x) in the real variable x. It is

straightforward to use optical methods to evaluate polynomials via Horner's

rule. Optical polynomial evaluation can be analog [11] or digital [12].

some "tricks" which accommodate dynamic range, allow root searching by

scanning, extend the range of problems addressed, etc. are given in the latter

reference. Root searching for real roots simply by scanning through x and

watching for p(x) - 0 conditions, is straightforward and fast. It is,

however, not likely to be highly accurate. Suppose we form an approximate

real root xo . We can then evaluate p(xo) and

pl(x) - p(x) - p(x )

digitally. Assuming we are now close to the true root, we can now change the

scale of both p, and x to gain sensitivity. We might substitute y - 10 x and
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q, - 10 pl, and then search q1 (y) as before. This leads to a better

approximation x, as can be verified by digital evaluation of p(xl). Accuracy

is limited by the condition number of the polynomial because that limits the

accuracy of the polynomial evaluation. Other similar examples can be found,

and a general set of logic can be set forth as discussed below.

A nonlinear computer of the type discussed in the first paragraph would

likely be of limited accuracy, but capable of achieving an extremely rapid

solution without the introduction of artificial linearization or iteration

algorithms. The machine could be used alone or incorporated into an overall

hybrid device along the lines discussed in Section 3 and in the polynomial

root searching example. This would entail introducing a high accuracy digital

computer as a means of monitoring residual errors. Updated corrections to the

original fully nonlinear solution could be achieved easily if the first

estimate is close enough to the true answer so that the nonlinear computer

effectively operates in the linear mode after the first cycle. As an

alternative it would be possible to construct an additional linearized version

of the machine for the accuracy updates on the solution. These approaches may

be theoretically modeled as well as demonstrated in the laboratory and we plan

to carry out such studies in the future.
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5. CONCLUSIONS

Analog optics, when adequate for a task, is usually superior in speed,

size, power consumption, and cost to all competitors. What we have suggested

here is a means to extend the set of situations for which analog optics is

adequate. Many studies remain to be performed on both algorithms and

hardware. Nevertheless the general concept of a hybrid system appears to be

extremely promising.
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